

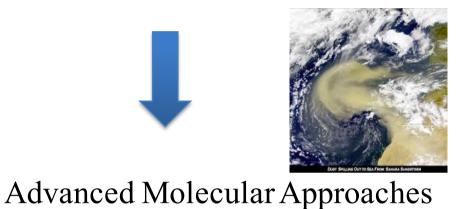




# Development of a high density microarray for assessing functional diversity

#### Molecular Genetics and Microbiology Group

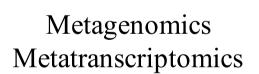
Department of Environmental and Natural Resources Management University of Patras, Agrinio, Greece


**George Tsiamis** 

XV Symposium in Pesticide Chemistry

Potential functional diversity of atmospheric fine particles: How this can be assessed in a rapid, high throughput, and cost-effective way?



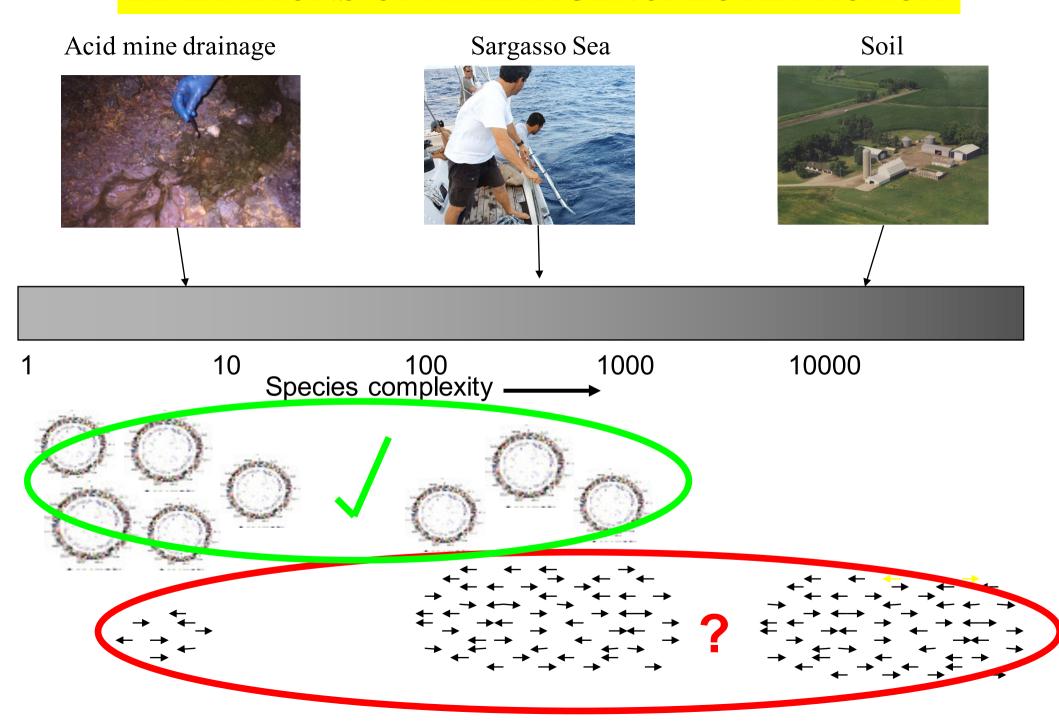





RT-qPCR – limited to a few genes per reaction








High density DNA microarrays Functional gene arrays



Characterization of the functional gene diversity from atmospheric fine particles

## LIMITATIONS OF A METAGENOMIC APPROACH



## Microarray advantages

Because of their design DNA microarrays can provide information on microbial communities in a:

- simple
- rapid
- high-throughput and parallel manner
- semi-quantitative data
- most cost-effective than other molecular techniques
- more sensitive than other PCR based approaches
- modular, once a set of probes has been developed extra probes can be designed in order to increase the analysis of the microarray

### Functional gene arrays

- Composed of probes for key genes involved in microbial functional process of interest
- FGA allow for the simultaneous examination of many functional genes, unlike PCR-based techniques that limit the number of genes that can be examined at one time

| Summary of representatives of various functional gene arrays |                                            |                 |                            |        |  |  |  |
|--------------------------------------------------------------|--------------------------------------------|-----------------|----------------------------|--------|--|--|--|
| Functional process (FGA)                                     | No. functional gene families               | Probe type      | No. functional gene probes | Refs   |  |  |  |
| N cycling and methanotroph                                   | 4 (amoA, nirS, nirK, pmoA)                 | Amplicons       | 89                         | [11]   |  |  |  |
| N cycling                                                    | 4 (amoA, nifH, nirS, nirK)                 | 70-mer oligos   | 61 and 64                  | [25]   |  |  |  |
| Antibiotic resistance                                        | 2 (tet, bla <sub>TEM-1</sub> )             | Amplicons       | 18                         | [31]   |  |  |  |
| N cycling (N fixation)                                       | 1 (niff-f)                                 | Amplicons       | 88                         | [26]   |  |  |  |
| N cycling, methanotroph, S reduction                         | 6 (amoA, nirS, nirK, nifH,<br>pmoA, dsrAB) | 50-mer oligos   | 763                        | [12]   |  |  |  |
| Contaminant degradation, metal resistance                    | NSª                                        | 50-mer oligos   | 2042                       | [13]   |  |  |  |
| N cycling (nodulation)                                       | 1 (nodC)                                   | 41–50 meroligos | 130                        | [27]   |  |  |  |
| Methanotroph                                                 | 1 ( <i>pmoA</i> )                          | ~20-mer oligos  | 59 and 68                  | [29,30 |  |  |  |
| Virulence                                                    | 2 (invA, sopB)                             | 70-mer oligos   | 4                          | [32]   |  |  |  |
| Virulence, artibiotic resistance                             | NSª                                        | Amplicons       | 120                        | [33]   |  |  |  |
| Comprehensive (GeoChip 2.0)                                  | >150                                       | 50-mer oligos   | 24 243                     | [7]    |  |  |  |
| Bioreaching                                                  | NSª                                        | 50-mer oligos   | 501                        | [37]   |  |  |  |
| N fixation                                                   | 1 (niffH)                                  | ~20-mer oligos  | 194                        | [28]   |  |  |  |
| Virulence                                                    | >30                                        | Oligos          | 791 and 2034               | [35]   |  |  |  |
| Virulence, antibiotic resistance (NimbleGen)                 | 160                                        | Oligos          | 1245                       | [34]   |  |  |  |
| Antimicrobiai resistance                                     | NSª                                        | Amplicons       | 800                        | [36]   |  |  |  |
| Comprehensive(GeoChip 3.0)                                   | 292                                        | 50-mer oligos   | 27 812                     | [8**]  |  |  |  |
| Compressorative                                              | NSª                                        | cDNA clones     | 13 056                     | [38**] |  |  |  |
| Comprehensive (GeoChip 4.0, NimbleGen)                       | 539 <sup>b</sup>                           | 50-mer oligos   | 120 054 🛑                  | [9*,10 |  |  |  |

He at al., 2011 Current Opinion in Biotechnology

## Seed aa dataset Carbamates: 3 gene families Organophosphates: 8 gene families Phenylureas: 3 gene families Triazines: 8 gene families Phenoxyalkanoics: 1 gene family tblastn -6 e-value ≥ 1e **Selected databases** env nt All bacterial genomes Selected soil metagenomes

# Pesticidechip – target sequence retrieval pipeline

## General databases

nt

number of seq 29.628.407 length ~85.2Gbp

env\_nt

number of seq 22.819.004 length ~24.5Gbp

# bacterial genomes

number of genomes 25.304 number of seq 3.237.238 length ~98.3Gbp

## Soil metagenomic datasets

number of seq 69.573.255 length ~24.5Gbp

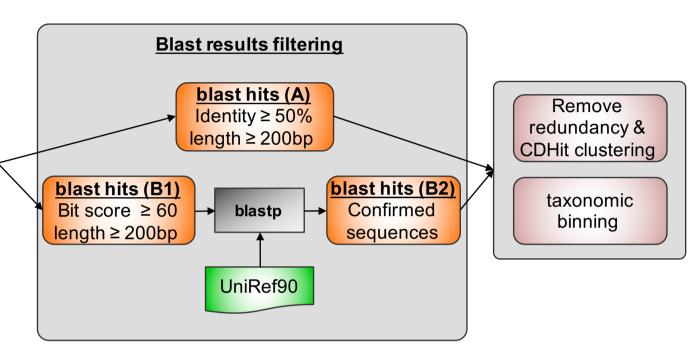
#### **CAMERA**

- 1. Waseca country farm soil metagenome
- 2. Metatranscriptomics of contaminated soil

#### **JGI**

- 1. Soil microbial communities from Arlington Agricultural Research station (Project ID: 50510).
- 2. Soil microbial communities from Great Prairies (Project ID: 15780).

#### **MG-RAST**

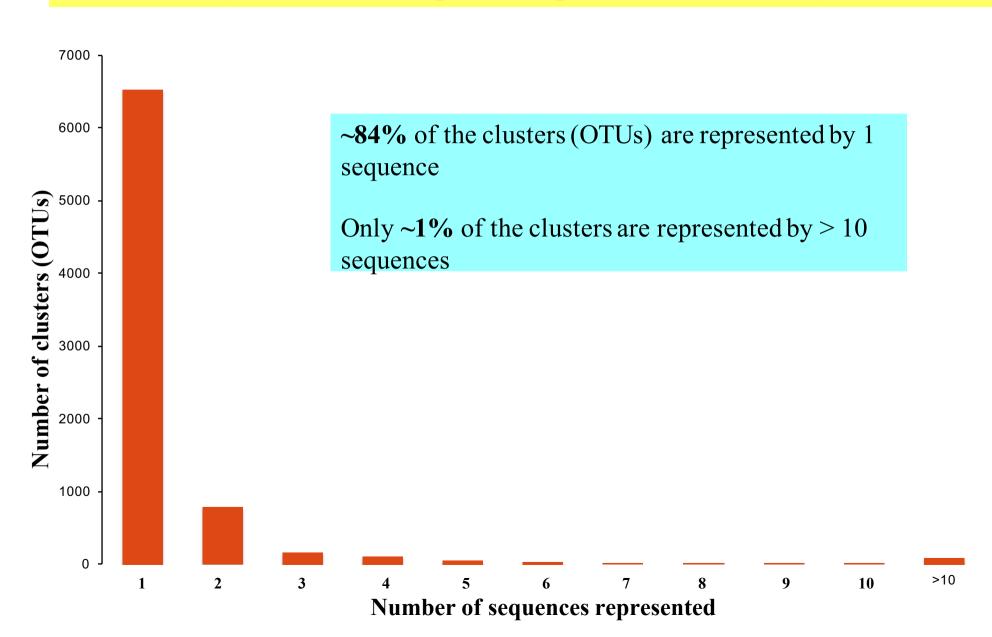

- 1. Metagenomic analysis of HCH degrading soil microbial communities.
- 2. POME metagenome
- 3. Soybean Rhizosphere from Amazon soils

# Seed aa dataset Carbamates: 3 gene families Organophosphates: 8 gene families Phenylureas: 3 gene families Triazines: 8 gene families Phenoxyalkanoics: 1 gene family tblastn \_6 e-value ≥ 1e

**Selected databases** 

env\_nt
All bacterial genomes
Selected soil metagenomes

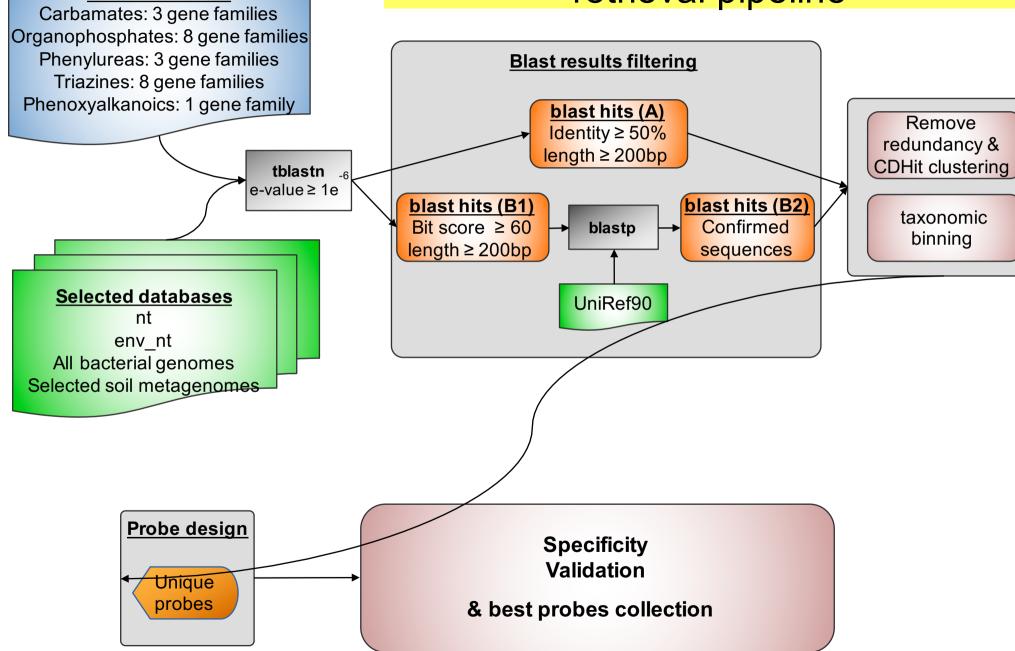
# Pesticidechip – target sequence retrieval pipeline




# NOTES ON CREATING A SEED aa DATABASE

- **ophB** and **fedA** share ~97% identities at an level (family 7)
- **opdA** share ~67-87% identities with **opd** group (family 4)
- **atzD** and **trzD** share >70% identities at an level (family 16 and family 20 respectively) → merged (family16\_20)
- The mpd group and the ophC2 are distant homologues sharing 43-45% identities at an level (family 5 and family 8 respectively)
- cahA contains a conserved amidase domain (distant homology with Glutaminyl-tRNA synthase!)

## Summary of sequence retrieval and clustering


(number of sequences per cluster - OTU)



# Sequence divergence compared to seed sequences

| gene family | mean  | median | min   | max |
|-------------|-------|--------|-------|-----|
| family1     | 53.99 | 52.835 | 36.28 | 100 |
| family2     | 53.85 | 52.94  | 45.16 | 100 |
| family3     | 72.31 | 98.83  | 34.86 | 100 |
| family4     | 58.07 | 51.22  | 27.78 | 100 |
| family5     | 64.48 | 56.25  | 39.23 | 100 |
| family6     | 51.54 | 50.68  | 43.66 | 100 |
| family7     | 48.03 | 50.27  | 37    | 100 |
| family8     | 56.73 | 55.37  | 31.62 | 100 |
| family9     | 78.67 | 84.58  | 27.4  | 100 |
| family10    | 55.23 | 53.54  | 44.32 | 100 |
| family11    | 52.89 | 51.35  | 40.21 | 100 |
| family12    | 54.2  | 51.48  | 44.02 | 100 |
| family13    | 69.67 | 53.73  | 34.78 | 100 |
| family14    | 63.06 | 57.94  | 50    | 100 |
| family15    | 99.64 | 100    | 98.53 | 100 |
| Family16_20 | 55.65 | 53.665 | 41.18 | 100 |
| family17    | 54.23 | 53.72  | 43.61 | 100 |
| family18    | 54.49 | 52.585 | 36.28 | 100 |
| family19    | 83.73 | 98.25  | 35.87 | 100 |
| family21    | 70.22 | 60.78  | 33.87 | 100 |

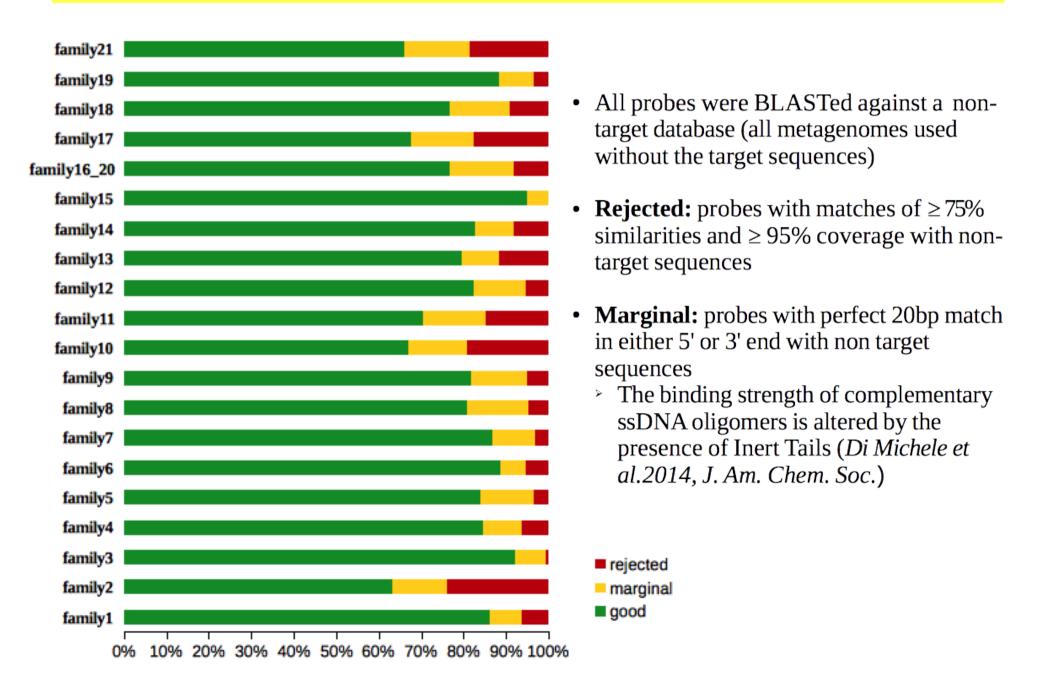
# Pesticidechip – target sequence retrieval pipeline



Seed aa dataset

## Oligonucleotide probe design

## ArrayOligoSelector


Cross-hybridization assessment based on Blast and thermodynamic calculations

**Probe size** = 50bp

Max number of probes designed by gene = 20

Non-target Blast database used for cross-hybridization assessment = complete bacterial genomes (genbank) and selected metagenomes

## In-silico validation of oligonucleotide probes



## Summary of oligonucleotide probes designed

| Gene family | Probes designed (before validation) | good  | marginal | bad  |
|-------------|-------------------------------------|-------|----------|------|
| 1           | 1501                                | 1295  | 110      | 96   |
| 2           | 4874                                | 3083  | 619      | 1172 |
| 3           | 129                                 | 119   | 9        | 1    |
| 4           | 595                                 | 504   | 53       | 38   |
| 5           | 1586                                | 1330  | 199      | 57   |
| 6           | 2931                                | 2603  | 173      | 155  |
| 7           | 465                                 | 404   | 46       | 15   |
| 8           | 1293                                | 1047  | 185      | 61   |
| 9           | 2452                                | 2006  | 320      | 126  |
| 10          | 1894                                | 1271  | 258      | 365  |
| 11          | 384                                 | 271   | 56       | 57   |
| 12          | 402                                 | 331   | 49       | 22   |
| 13          | 147                                 | 117   | 13       | 17   |
| 14          | 336                                 | 278   | 30       | 28   |
| 15          | 20                                  | 19    | 1        | 0    |
| 16,20       | 927                                 | 711   | 141      | 75   |
| 17          | 7131                                | 4820  | 1050     | 1261 |
| 18          | 7618                                | 5844  | 1071     | 703  |
| 19          | 87                                  | 77    | 7        | 3    |
| 21          | 2220                                | 1467  | 338      | 415  |
| Total       | 36992                               | 27597 | 4728     | 4667 |

## **CONCLUSIONS – FUTURE WORK**

- Design of probes is completed
- The pipeline is semi-automatic with the development of new probes completed within 1-2 weeks per gene family.
- 20 gene families, 8012 OTUs, 32,325 diagnostic probes
- DNA microarray will be developed as an open platform
- DNA microarray will be used in wet lab evaluation using reference soils (who is there=DNA; who is active=RNA)
- Development of a software package for the easy analysis of the microarray data
- Enrichment of the "functional microarray" with more gene families

#### > University of Patras

- Stefanos Siozios
- Sonia Nikolaki



## Acknowledgements



## **►** <u>University of Crete</u>

- E. Stephanou
- M. Iakovidis
- S. Pergantis
- T. Tziaras











Thank you!